Search results for "Cadherin Related Proteins"

showing 7 items of 7 documents

Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle

2002

Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and i…

DNA ComplementaryCadherin Related ProteinsCell Cycle Proteinsmacromolecular substancesMyosinsBiologyTransfectionMicrofilamentGeneral Biochemistry Genetics and Molecular BiologyCell LineMiceCDH23Two-Hybrid System TechniquesHair Cells Auditoryotorhinolaryngologic diseasesmedicineAnimalsHumansProtein IsoformsRats WistarMolecular BiologyActinAdaptor Proteins Signal TransducingGene LibraryGeneral Immunology and MicrobiologyCadherinGeneral NeuroscienceStereociliaDyneinsCell DifferentiationArticlesCadherinsActin cytoskeletonActinsProtein Structure TertiaryRatsCell biologyCytoskeletal ProteinsMicroscopy Electronmedicine.anatomical_structureMicroscopy FluorescenceMyosin VIIasense organsCarrier ProteinsTip linkPCDH15HeLa CellsProtein BindingThe EMBO Journal
researchProduct

The b1 isoform of protocadherin-gamma (Pcdhgamma) interacts with the microtubule-destabilizing protein SCG10.

2004

Due to their structural characteristics and their diversity, the 22 members of the protocadherin-gamma (Pcdhgamma) family have been suggested to contribute to the establishment of specific connections in the nervous system. Here, we focus on a single isoform, Pcdhgamma-b1. Its expression is found in different brain regions and in developing spinal cord it is restricted to scattered cells, whereas all cells are labeled using an antibody that recognizes all Pcdhgamma isoforms. As a first step to understanding the signaling mechanisms downstream of Pcdhgamma, we identify the microtubule-destabilizing protein SCG10 as a cytoplasmic interactor for Pcdhgamma-b1 and other isoforms of the Pcdhgamma…

Gene isoformNervous systemSubfamilyRecombinant Fusion ProteinsBiophysicsTwo-hybridProtocadherinCadherin Related ProteinsBiologyBiochemistryMicrotubulesMiceProtocadherinStructural BiologyMicrotubuleTwo-Hybrid System TechniquesChlorocebus aethiopsGeneticsmedicineAnimalsProtein IsoformsInteractorNerve Growth FactorsGrowth coneMolecular BiologyNeuronsProtocadherin-gammaCalcium-Binding ProteinsIntracellular Signaling Peptides and ProteinsBrainCell BiologySCGIOCadherinsMolecular biologyCell biologySCG10medicine.anatomical_structureCytoplasmCOS CellsStathminGrowth coneSignal TransductionFEBS letters
researchProduct

Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher …

2006

Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to…

Scaffold proteinModels MolecularUsher syndromePDZ domainProtocadherinCadherin Related ProteinsCell Cycle ProteinsNerve Tissue ProteinsBiologyDeafnessMyosinsCellular and Molecular NeuroscienceRetinitis pigmentosaotorhinolaryngologic diseasesmedicineAnimalsHumansAdaptor Proteins Signal TransducingGeneticsExtracellular Matrix ProteinsModels GeneticCadherinRetinal DegenerationSignal transducing adaptor proteinDyneinsMembrane Proteinsmedicine.diseaseCadherinsSensory SystemsOphthalmologyCytoskeletal ProteinsDisease Models AnimalMembrane proteinMyosin VIIaMutationMicrotubule ProteinsVestibule LabyrinthUsher SyndromesExperimental eye research
researchProduct

A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth

2008

The planar polarity and staircase-like pattern of the hair bundle are essential to the mechanoelectrical transduction function of inner ear sensory cells. Mutations in genes encoding myosin VIIa, harmonin, cadherin 23,protocadherin 15 or sans cause Usher syndrome type I (USH1, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa leading to blindness) in humans and hair bundle disorganization in mice. Whether the USH1 proteins are involved in common hair bundle morphogenetic processes is unknown. Here, we show that mouse models for the five USH1 genetic forms share hair bundle morphological defects. Hair bundle fragmentation and misorientation (25-52° mean ki…

Stereocilia (inner ear)Cadherin Related ProteinsProtocadherinCell Cycle ProteinsNerve Tissue ProteinsMyosinsBiologyMechanotransduction CellularMiceCDH23Pregnancyotorhinolaryngologic diseasesmedicineAnimalsHumansInner earProtein PrecursorsMolecular BiologyActinMice KnockoutCadherinDyneinsAnatomyCadherinsMice Mutant StrainsCochleaCell biologyCytoskeletal ProteinsDisease Models AnimalPhenotypemedicine.anatomical_structureMyosin VIIaMicroscopy Electron ScanningFemalesense organsCarrier ProteinsUsher SyndromesTip linkPCDH15Developmental BiologyDevelopment
researchProduct

Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells

2012

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient’s tissues. The last objective was to evaluate the nasal ciliary beat fre…

Usher syndromelcsh:Medicinemedicine.disease_causeGene SplicingMolecular cell biologyAutosomal Recessivelcsh:ScienceGeneticsMutationMultidisciplinaryCadherinsMyosin VIIaRNA splicingSensory PerceptionUsher SyndromesResearch ArticleRNA SplicingCadherin Related ProteinsBiologyMyosinsNoseGenetic MutationRetinitis pigmentosamedicineGeneticsotorhinolaryngologic diseasesHumansCiliaBiologyMessenger RNAlcsh:RIntronMutation TypesComputational BiologyGenetic VariationEpithelial CellsHuman Geneticsmedicine.diseaseMolecular biologyRNA processingMutagenesisCase-Control StudiesMutationGenetics of Diseaselcsh:QGene expressionSensory DeprivationPCDH15MinigeneCloningNeuroscience
researchProduct

Interactions in the network of Usher syndrome type 1 proteins

2004

International audience; Defects in myosin VIIa, harmonin (a PDZ domain protein), cadherin 23, protocadherin 15 and sans (a putative scaffolding protein), underlie five forms of Usher syndrome type I (USH1). Mouse mutants for all these proteins exhibit disorganization of their hair bundle, which is the mechanotransduction receptive structure of the inner ear sensory cells, the cochlear and vestibular hair cells. We have previously demonstrated that harmonin interacts with cadherin 23 and myosin VIIa. Here we address the extent of interactions between the five known USH1 proteins. We establish the previously suggested sans-harmonin interaction and find that sans also binds to myosin VIIa. We …

[SDV]Life Sciences [q-bio]Hearing Loss SensorineuralStereocilia (inner ear)PDZ domainCadherin Related ProteinsProtocadherinCell Cycle ProteinsNerve Tissue ProteinsCuticular plateMyosinsBiologyMiceTwo-Hybrid System TechniquesHair Cells AuditoryBone plateMyosinotorhinolaryngologic diseasesGeneticsAnimalsHumansProtein PrecursorsMolecular BiologyGenetics (clinical)GeneticsStereociliumDyneinsSyndromeGeneral MedicineCadherinsCell biologyCytoskeletal ProteinsMyosin VIIaMutationsense organsCarrier ProteinsRetinitis PigmentosaPCDH15HeLa CellsProtein BindingHuman Molecular Genetics
researchProduct

Microarray-based mutation analysis of 183 Spanish families with Usher syndrome.

2010

PURPOSE. The purpose of this study was to test the ability of the genotyping microarray for Usher syndrome (USH) to identify the mutations responsible for the disease in a cohort of 183 patients with USH. METHODS. DNA from 183 patients with Usher syndrome from the Spanish population was analyzed using a genotyping microarray containing 429 previously identified disease-associated variants in eight USH genes. Mutations detected by the array were confirmed by direct sequencing. Haplotype analysis was also performed in families carrying common Spanish mutations. RESULTS. The genotyping microarray identified 43 different variants, divided into 32 disease causative and 11 probably non-pathologic…

medicine.medical_specialtyGenotypeMicroarrayUsher syndromeDNA Mutational AnalysisCadherin Related ProteinsCell Cycle ProteinsNerve Tissue ProteinsMyosinsBiologymedicine.disease_causePolymerase Chain ReactionReceptors G-Protein-CoupledMolecular geneticsGenotypemedicineotorhinolaryngologic diseasesHumansGenotypingAllelesAdaptor Proteins Signal TransducingOligonucleotide Array Sequence AnalysisGeneticsExtracellular Matrix ProteinsMutationGene Expression ProfilingHaplotypeMembrane ProteinsCadherinsmedicine.diseaseGene expression profilingCytoskeletal ProteinsSpainMyosin VIIaMutationUsher Syndromes
researchProduct